Bilingual Wealth Creation Blueprint

From Credit Risk to Alpha: Unlocking U.S. and China Markets with AI, Trading, and Historical Insights

从信用风险到阿尔法:利用AI、交易和历史洞察解锁美国与中国市场

Your Edge: A Unique Combination of Expertise

With 20 years in credit risk modeling, a Ph.D. in Economics, investment and trading expertise (Macro-Technical Confluence Model, sentiment analysis), history and early education skills, and bilingual Chinese/English fluency with 25 years in the U.S., you deliver data-driven, culturally nuanced solutions at 10x speed using AI.

凭借20年信用风险建模经验经济学背景投资与交易专长(宏观-技术融合模型、情绪分析)、历史与早期教育技能以及25年美国居住经验的双语能力,您能够利用AI以10倍速度提供数据驱动、具有文化深度的解决方案。

Tagline: “From Basel III to Buffett—quantifying risk, capturing alpha, powered by 5,000 years of history.”

口号: “从巴塞尔协议到巴菲特——量化风险,捕捉阿尔法,源自5000年历史的力量。”

Model 1: Quant-Historian Alpha Generator (Content + Tools)

Positioning

“Where Credit Risk, Trading, and Historical Insights Meet AI to Deliver Alpha”

“信用风险、交易与历史洞察结合AI,创造阿尔法”

Audience: Retail traders, hedge funds, finance educators, Chinese-American investors, Chinese HNWIs.

Target Niches

目标市场:
- 美国→中国:“为中国移民提供信用驱动的交易策略” – 交易ETF(SPY)与信用信号、401(k)策略、风险管理。
- 中国→美国:“美国市场为中国投资者” – 期权(铁鹰策略)、外汇(美元/人民币)、宏观驱动(美联储 vs. 中国央行)。
- 混合:“双语家庭金融素养” – 教授儿童投资、大学储蓄(529计划 vs. 中国基金)。

AI-Powered Workflow

Monetization

60-Day Action Plan

  1. Week 1: Launch “Dr. [Your Name]’s Credit & Markets” on LinkedIn/微信公众号. Post: “Why 2025 = 1994 (Trade It).”
  2. Week 2-3: Free lead magnet: “5 AI-Backtested Trading Signals.” Collect emails (Beehiiv).
  3. Week 4-5: 2 bilingual articles + YouTube Shorts/WeChat Videos (e.g., “USD/CNY Trading”).
  4. Week 6-8: Launch $49 e-book (Gumroad). Drive 50 sales ($2,450).
Start Model 1 Today

Model 2: Credit-Alpha AI Advisory Firm

Positioning

“Credit Risk, Trading, and Macro Insights for Institutional and High-Net-Worth Clients”

“为机构和高净值客户提供信用风险、交易和宏观洞察”

Audience: Hedge funds, family offices, Chinese SMEs, U.S. firms entering China.

Core Services

Service Description AI + Expertise Pricing
Portfolio Armoring Optimize portfolios with credit risk models Python (scikit-learn) for PD/LGD models; macro signals (Fed hikes) $30,000/quarter
Tactical Asset Allocation Dynamic trading strategies Backtrader for momentum strategies; historical analogs (1997 crisis) 1% AUM ($50,000-$100,000/year)
China-U.S. Risk Arbitrage Exploit credit/market inefficiencies Scrape CBIRC/FRED data; Claude 3.5 for 2008 analogs $50,000/project
Bilingual Financial Training Workshops for cross-border teams ChatGPT slide decks; early education techniques $3,000/workshop

Client Acquisition

60-Day Action Plan

  1. Week 1: Mock risk arbitrage report (NPL vs. HYG Spreads).
  2. Week 2-3: Outreach to 30 U.S. funds + 30 Chinese family offices.
  3. Week 4-5: Close 1 client ($30,000/quarter) with pilot project.
  4. Week 6-8: Deliver pilot, upsell $3,000 workshop.
Start Model 2 Today

Model 3: Algorithmic Trading & Education Products

Positioning

“Scalable, AI-Driven Trading and Financial Education Tools”

“可扩展的AI驱动交易与金融教育工具”

Audience: Retail traders, trading academies, bilingual families, Chinese HNWIs.

Product Ideas

Product Description AI + Expertise Pricing
Crisis Navigator SaaS Real-time trading signals Python (Streamlit, yfinance) for spreads/sentiment; 1929/2008 analogs $199/mo, $10,000/year (API)
Warren Buffett Meets AI Simulator Historical trading modules Gretel.ai for synthetic data; backtest 1987 crash $299/course
Family Office in a Box Credit-risk-aware allocation Python (pandas) for VaR; historical filters $5,000/year
Bilingual Trading Guide “U.S. Options vs. China Futures” Claude 3.5; 2015 China crash analogs $149

Sales Channels

60-Day Action Plan

  1. Week 1: “Crisis Navigator” MVP ($199/mo, Streamlit).
  2. Week 2-3: $149 bilingual guide (Gumroad/Xiaohongshu).
  3. Week 4-5: 3-lesson trading course ($99, Teachable/Dedao).
  4. Week 6-8: 4 Xiaohongshu/LinkedIn posts with charts. Drive 50 sales ($5,000-$7,000).
Start Model 3 Today

Nuclear Combo: Credit-to-Trading Signal Engine

Process

  1. Data Input: Scrape Chinese NPLs (CBIRC) + U.S. HYG flows (FRED).
  2. AI Analysis: Claude 3.5 for historical analogs (1997/2008); Python (TA-Lib) for momentum screens.
  3. Outputs:
    • Institutional Reports: $15,000/quarter.
    • Retail Alerts: $99/mo (Discord).
    • K-12 Modules: $199/course (“Crises for Kids”).

Edge: Your credit risk, trading, historical, and bilingual expertise creates defensible IP.

优势:您的信用风险、交易、历史和双语专长打造了不可复制的知识产权。

AI + Data Tool Stack

Task Tool Your Supercharge
Backtesting QuantConnect, Backtrader Credit-risk constraints
Signal Generation Python (TA-Lib), Claude 3.5 NPL ratio forecasts
Synthetic Data Gretel.ai 1970s stagflation simulation
Client Reports ChatGPT Advanced Data Analysis Auto-embedded FRED charts + history

90-Day Roadmap & Next Steps

Roadmap

Pricing Power Playbook

Today’s Next Step

Launch Model 1. Use Claude 3.5 to draft a bilingual article: “How Chinese Investors Can Trade U.S. Markets with Credit Risk Signals.” Back with yfinance data (SPY vs. HYG spreads, 2024) and 1994 crash analog. Post on LinkedIn (EN) and Xiaohongshu (CN) by July 20, 2025.

启动Model 1。使用Claude 3.5起草双语文章:“中国投资者如何利用信用风险信号交易美国市场。” 以yfinance数据(2024年SPY vs. HYG价差)和1994年崩盘类比为支撑。在LinkedIn(英文)和小红书(中文)上发布,截止2025年7月20日。

Get Started Now