From Credit Risk to Alpha: Unlocking U.S. and China Markets with AI, Trading, and Historical Insights
从信用风险到阿尔法:利用AI、交易和历史洞察解锁美国与中国市场
With 20 years in credit risk modeling, a Ph.D. in Economics, investment and trading expertise (Macro-Technical Confluence Model, sentiment analysis), history and early education skills, and bilingual Chinese/English fluency with 25 years in the U.S., you deliver data-driven, culturally nuanced solutions at 10x speed using AI.
凭借20年信用风险建模经验、经济学背景、投资与交易专长(宏观-技术融合模型、情绪分析)、历史与早期教育技能以及25年美国居住经验的双语能力,您能够利用AI以10倍速度提供数据驱动、具有文化深度的解决方案。
Tagline: “From Basel III to Buffett—quantifying risk, capturing alpha, powered by 5,000 years of history.”
口号: “从巴塞尔协议到巴菲特——量化风险,捕捉阿尔法,源自5000年历史的力量。”
“Where Credit Risk, Trading, and Historical Insights Meet AI to Deliver Alpha”
“信用风险、交易与历史洞察结合AI,创造阿尔法”
Audience: Retail traders, hedge funds, finance educators, Chinese-American investors, Chinese HNWIs.
目标市场:
- 美国→中国:“为中国移民提供信用驱动的交易策略” – 交易ETF(SPY)与信用信号、401(k)策略、风险管理。
- 中国→美国:“美国市场为中国投资者” – 期权(铁鹰策略)、外汇(美元/人民币)、宏观驱动(美联储 vs. 中国央行)。
- 混合:“双语家庭金融素养” – 教授儿童投资、大学储蓄(529计划 vs. 中国基金)。
“Credit Risk, Trading, and Macro Insights for Institutional and High-Net-Worth Clients”
“为机构和高净值客户提供信用风险、交易和宏观洞察”
Audience: Hedge funds, family offices, Chinese SMEs, U.S. firms entering China.
Service | Description | AI + Expertise | Pricing |
---|---|---|---|
Portfolio Armoring | Optimize portfolios with credit risk models | Python (scikit-learn) for PD/LGD models; macro signals (Fed hikes) | $30,000/quarter |
Tactical Asset Allocation | Dynamic trading strategies | Backtrader for momentum strategies; historical analogs (1997 crisis) | 1% AUM ($50,000-$100,000/year) |
China-U.S. Risk Arbitrage | Exploit credit/market inefficiencies | Scrape CBIRC/FRED data; Claude 3.5 for 2008 analogs | $50,000/project |
Bilingual Financial Training | Workshops for cross-border teams | ChatGPT slide decks; early education techniques | $3,000/workshop |
“Scalable, AI-Driven Trading and Financial Education Tools”
“可扩展的AI驱动交易与金融教育工具”
Audience: Retail traders, trading academies, bilingual families, Chinese HNWIs.
Product | Description | AI + Expertise | Pricing |
---|---|---|---|
Crisis Navigator SaaS | Real-time trading signals | Python (Streamlit, yfinance) for spreads/sentiment; 1929/2008 analogs | $199/mo, $10,000/year (API) |
Warren Buffett Meets AI Simulator | Historical trading modules | Gretel.ai for synthetic data; backtest 1987 crash | $299/course |
Family Office in a Box | Credit-risk-aware allocation | Python (pandas) for VaR; historical filters | $5,000/year |
Bilingual Trading Guide | “U.S. Options vs. China Futures” | Claude 3.5; 2015 China crash analogs | $149 |
Edge: Your credit risk, trading, historical, and bilingual expertise creates defensible IP.
优势:您的信用风险、交易、历史和双语专长打造了不可复制的知识产权。
Task | Tool | Your Supercharge |
---|---|---|
Backtesting | QuantConnect, Backtrader | Credit-risk constraints |
Signal Generation | Python (TA-Lib), Claude 3.5 | NPL ratio forecasts |
Synthetic Data | Gretel.ai | 1970s stagflation simulation |
Client Reports | ChatGPT Advanced Data Analysis | Auto-embedded FRED charts + history |
Launch Model 1. Use Claude 3.5 to draft a bilingual article: “How Chinese Investors Can Trade U.S. Markets with Credit Risk Signals.” Back with yfinance data (SPY vs. HYG spreads, 2024) and 1994 crash analog. Post on LinkedIn (EN) and Xiaohongshu (CN) by July 20, 2025.
启动Model 1。使用Claude 3.5起草双语文章:“中国投资者如何利用信用风险信号交易美国市场。” 以yfinance数据(2024年SPY vs. HYG价差)和1994年崩盘类比为支撑。在LinkedIn(英文)和小红书(中文)上发布,截止2025年7月20日。
Get Started Now